Loading...

National Institute of Mental Health Data Archive (NDA) Sign In
National Institute of Mental Health Data Archive (NDA) Sign In
NDA

Success! An email is on its way!

Please check your email to complete the linking process. The link you receive is only valid for 30 minutes.

Check your spam or junk folder if you do not receive the email in the next few minutes.

Warning Notice This is a U.S. Government computer system, which may be accessed and used only for authorized Government business by authorized personnel. Unauthorized access or use of this computer system may subject violators to criminal, civil, and/or administrative action. All information on this computer system may be intercepted, recorded, read, copied, and disclosed by and to authorized personnel for official purposes, including criminal investigations. Such information includes sensitive data encrypted to comply with confidentiality and privacy requirements. Access or use of this computer system by any person, whether authorized or unauthorized, constitutes consent to these terms. There is no right of privacy in this system.
Create or Link an Existing NDA Account
NIMH Data Archive (NDA) Sign In or Create An Account
Update Password

You have logged in with a temporary password. Please update your password. Passwords must contain 8 or more characters and must contain at least 3 of the following types of characters:

  • Uppercase
  • Lowercase
  • Numbers
  • Special Characters limited to: %,_,!,@,#,$,-,%,&,+,=,),(,*,^,:,;

Subscribe to our mailing list

Mailing List(s)
Email Format

You are now leaving the NIMH Data Archive (NDA) web site to go to:

Click on the address above if the page does not change within 10 seconds.

Disclaimer

NDA is not responsible for the content of this external site and does not monitor other web sites for accuracy.

Accept Terms
Data Access Terms - Decline Terms

Are you sure you want to cancel? This will decline terms and you will not be authorized for access.

1 Numbers reported are subjects by age
New Trial
New Project

Format should be in the following format: Activity Code, Institute Abbreviation, and Serial Number. Grant Type, Support Year, and Suffix should be excluded. For example, grant 1R01MH123456-01A1 should be entered R01MH123456

Please select an experiment type below

Collection - Use Existing Experiment
To associate an experiment to the current collection, just select an axperiment from the table below then click the associate experiment button to persist your changes (saving the collection is not required). Note that once an experiment has been associated to two or more collections, the experiment will not longer be editable.

The table search feature is case insensitive and targets the experiment id, experiment name and experiment type columns. The experiment id is searched only when the search term entered is a number, and filtered using a startsWith comparison. When the search term is not numeric the experiment name is used to filter the results.
SelectExperiment IdExperiment NameExperiment Type
Created On
24HI-NGS_R1Omics02/16/2011
475MB1-10 (CHOP)Omics06/07/2016
490Illumina Infinium PsychArray BeadChip AssayOmics07/07/2016
501PharmacoBOLD Resting StatefMRI07/27/2016
506PVPREFOmics08/05/2016
509ABC-CT Resting v2EEG08/18/2016
13Comparison of FI expression in Autistic and Neurotypical Homo SapiensOmics12/28/2010
18AGRE/Broad Affymetrix 5.0 Genotype ExperimentOmics01/06/2011
22Stitching PCR SequencingOmics02/14/2011
26ASD_MethylationOmics03/01/2011
29Microarray family 03 (father, mother, sibling)Omics03/24/2011
37Standard paired-end sequencing of BCRsOmics04/19/2011
38Illumina Mate-Pair BCR sequencingOmics04/19/2011
39Custom Jumping LibrariesOmics04/19/2011
40Custom CapBPOmics04/19/2011
41ImmunofluorescenceOmics05/11/2011
43Autism brain sample genotyping, IlluminaOmics05/16/2011
47ARRA Autism Sequencing Collaboration at Baylor. SOLiD 4 SystemOmics08/01/2011
53AGRE Omni1-quadOmics10/11/2011
59AGP genotypingOmics04/03/2012
60Ultradeep 454 sequencing of synaptic genes from postmortem cerebella of individuals with ASD and neurotypical controlsOmics06/23/2012
63Microemulsion PCR and Targeted Resequencing for Variant Detection in ASDOmics07/20/2012
76Whole Genome Sequencing in Autism FamiliesOmics01/03/2013
519RestingfMRI11/08/2016
90Genotyped IAN SamplesOmics07/09/2013
91NJLAGS Axiom Genotyping ArrayOmics07/16/2013
93AGP genotyping (CNV)Omics09/06/2013
106Longitudinal Sleep Study. H20 200. Channel set 2EEG11/07/2013
107Longitudinal Sleep Study. H20 200. Channel set 3EEG11/07/2013
108Longitudinal Sleep Study. AURA 200EEG11/07/2013
105Longitudinal Sleep Study. H20 200. Channel set 1EEG11/07/2013
109Longitudinal Sleep Study. AURA 400EEG11/07/2013
116Gene Expression Analysis WG-6Omics01/07/2014
131Jeste Lab UCLA ACEii: Charlie Brown and Sesame Street - Project 1Eye Tracking02/27/2014
132Jeste Lab UCLA ACEii: Animacy - Project 1Eye Tracking02/27/2014
133Jeste Lab UCLA ACEii: Mom Stranger - Project 2Eye Tracking02/27/2014
134Jeste Lab UCLA ACEii: Face Emotion - Project 3Eye Tracking02/27/2014
145AGRE/FMR1_Illumina.JHUOmics04/14/2014
146AGRE/MECP2_Sanger.JHUOmics04/14/2014
147AGRE/MECP2_Junior.JHUOmics04/14/2014
151Candidate Gene Identification in familial AutismOmics06/09/2014
152NJLAGS Whole Genome SequencingOmics07/01/2014
154Math Autism Study - Vinod MenonfMRI07/15/2014
155RestingfMRI07/25/2014
156SpeechfMRI07/25/2014
159EmotionfMRI07/25/2014
160syllable contrastEEG07/29/2014
167School-age naturalistic stimuliEye Tracking09/19/2014
44AGRE/Broad Affymetrix 5.0 Genotype ExperimentOmics06/27/2011
45Exome Sequencing of 20 Sporadic Cases of Autism Spectrum DisorderOmics07/15/2011
Collection - Add Experiment
Add Supporting Documentation
Select File

To add an existing Data Structure, enter its title in the search bar. If you need to request changes, select the indicator "No, it requires changes to meet research needs" after selecting the Structure, and upload the file with the request changes specific to the selected Data Structure. Your file should follow the Request Changes Procedure. If the Data Structure does not exist, select "Request New Data Structure" and upload the appropriate zip file.

Request Submission Exemption
Characters Remaining:
Not Eligible

The Data Expected list for this Collection shows some raw data as missing. Contact the NDA Help Desk with any questions.

Please confirm that you will not be enrolling any more subjects and that all raw data has been collected and submitted.

Collection Updated

Your Collection is now in Data Analysis phase and exempt from biannual submissions. Analyzed data is still expected prior to publication or no later than the project end date.

[CMS] Attention
[CMS] Please confirm that you will not be enrolling any more subjects and that all raw data has been collected and submitted.
[CMS] Error

[CMS]

Unable to change collection phase where targeted enrollment is less than 90%

Delete Submission Exemption
Are you sure you want to delete this submission exemption?
You have requested to move the sharing dates for the following assessments:
Data Expected Item Original Sharing Date New Sharing Date

Please provide a reason for this change, which will be sent to the Program Officers listed within this collection:

Explanation must be between 20 and 200 characters in length.

Please press Save or Cancel
Add New Email Address - Dialog
New Email Address
Collection Summary Collection Charts
Collection Title Collection Investigators Collection Description
Computational, Neural, and Behavioral Studies of Competition-Dependent Learning
Kenneth Norman 
Our overarching goal is to understanding how stored memories change as a function of experience. The pro-posed work builds on prior research showing a U-shaped relationship between memory activation and learn-ing, whereby strong activation leads to synaptic strengthening, moderate activation leads to synaptic weaken-ing, and no activation leads to no change in synaptic strength. The present grant focuses on the implications of this U-shaped relationship for representational change Learning is not just about making memories stronger or weaker it can also decrease neural overlap between memories differentiation or increase neural overlap integration. These neural changes can have profound effects on memory retrieval Decreased overlap can reduce interference, at the cost of preventing generalization. Our specific goal is to construct and test a com-putational model of representational change and how it is shaped by competitive neural dynamics. When im-plemented in neural networks that are capable of self-organizing internal representations, our theory makes clear, novel predictions about when differentiation and integration will occur Differentiation of memories A and B will occur when i B is moderately activated while processing A, causing weakening of connections between B and A, and ii B is reactivated later, allowing it to acquire new features that do not overlap with A by con-trast, integration will occur if B is strongly activated during A, causing strengthening of connections between Band A. Aim 1 will use neural network simulations to address vexing puzzles in the literature and to generate novel empirical predictions. Aim 2 will test these predictions using behavioral and fMRI experiments focused on learning of new associations in the hippocampus, with a particular emphasis on testing the models predic-tions about how competitive dynamics relate to representational change. Aim 3 will test the models predictions regarding cortical plasticity, using a novel sketching task that induces competition between representations of familiar objects. Representational change will be assessed behaviorally in terms of how sketches and object recognition change over learning and neurally using fMRI of visual cortex a deep neural network model of the ventral stream will be used to measure changes in the features of sketches. In summary The proposed studies use multiple innovative approaches fMRI pattern analysis, neural network modeling, free-form object sketching, and computer vision to address the fundamental question of when experience causes neural repre-sentations to differentiate or integrate, thereby advancing our basic understanding of neuroplasticity. Improving our understanding of neural differentiation could have transformative implications for treating cognitive deficits in a wide range of clinical conditions, including stroke, dyslexia, and dementia. In all of these conditions, cogni-tive deficits can arise from insufficient separation of representations. This research may lead to better ways of re-differentiating these representations and through this ameliorating the associated cognitive deficits.
NIMH Data Archive
09/29/2016
Funding Completed
Close Out
No
$1,919,481.00
410
Loading Chart...
NIH - Extramural None



R01MH069456-11 Computational, Neural, and Behavioral Studies of Competition-Dependent Learning 09/19/2016 06/30/2021 986 2053 PRINCETON UNIVERSITY $1,919,481.00

helpcenter.collection.general-tab

NDA Help Center

Collection - General Tab

Fields available for edit on the top portion of the page include:

  • Collection Title
  • Investigators
  • Collection Description
  • Collection Phase
  • Funding Source
  • Clinical Trials

Collection Phase: The current status of a research project submitting data to an NDA Collection, based on the timing of the award and/or the data that have been submitted.

  • Pre-Enrollment: The default entry made when the NDA Collection is created.
  • Enrolling: Data have been submitted to the NDA Collection or the NDA Data Expected initial submission date has been reached for at least one data structure category in the NDA Collection.
  • Data Analysis: Subject level data collection for the research project is completed and has been submitted to the NDA Collection. The NDA Collection owner or the NDA Help Desk may set this phase when they’ve confirmed data submission is complete and submitted subject counts match at least 90% of the target enrollment numbers in the NDA Data Expected. Data submission reminders will be turned off for the NDA Collection.
  • Funding Completed: The NIH grant award (or awards) associated with the NDA Collection has reached its end date. NDA Collections in Funding Completed phase are assigned a subphase to indicate the status of data submission.
    • The Data Expected Subphase indicates that NDA expects more data will be submitted
    • The Closeout Subphase indicates the data submission is complete.
    • The Sharing Not Met Subphase indicates that data submission was not completed as expected.

Blinded Clinical Trial Status:

  • This status is set by a Collection Owner and indicates the research project is a double blinded clinical trial. When selected, the public view of Data Expected will show the Data Expected items and the Submission Dates, but the targeted enrollment and subjects submitted counts will not be displayed.
  • Targeted enrollment and subjects submitted counts are visible only to NDA Administrators and to the NDA Collection or as the NDA Collection Owner.
  • When an NDA Collection that is flagged Blinded Clinical Trial reaches the maximum data sharing date for that Data Repository (see https://nda.nih.gov/nda/sharing-regimen.html), the embargo on Data Expected information is released.

Funding Source

The organization(s) responsible for providing the funding is listed here.

Supporting Documentation

Users with Submission privileges, as well as Collection Owners, Program Officers, and those with Administrator privileges, may upload and attach supporting documentation. By default, supporting documentation is shared to the general public, however, the option is also available to limit this information to qualified researchers only.

Grant Information

Identifiable details are displayed about the Project of which the Collection was derived from. You may click in the Project Number to view a full report of the Project captured by the NIH.

Clinical Trials

Any data that is collected to support or further the research of clinical studies will be available here. Collection Owners and those with Administrator privileges may add new clinical trials.

Frequently Asked Questions

  • How does the NIMH Data Archive (NDA) determine which Permission Group data are submitted into?
    During Collection creation, NDA staff determine the appropriate Permission Group based on the type of data to be submitted, the type of access that will be available to data access users, and the information provided by the Program Officer during grant award.
  • How do I know when a NDA Collection has been created?
    When a Collection is created by NDA staff, an email notification will automatically be sent to the PI(s) of the grant(s) associated with the Collection to notify them.
  • Is a single grant number ever associated with more than one Collection?
    The NDA system does not allow for a single grant to be associated with more than one Collection; therefore, a single grant will not be listed in the Grant Information section of a Collection for more than one Collection.
  • Why is there sometimes more than one grant included in a Collection?
    In general, each Collection is associated with only one grant; however, multiple grants may be associated if the grant has multiple competing segments for the same grant number or if multiple different grants are all working on the same project and it makes sense to hold the data in one Collection (e.g., Cooperative Agreements).

Glossary

  • Administrator Privilege
    A privilege provided to a user associated with an NDA Collection or NDA Study whereby that user can perform a full range of actions including providing privileges to other users.
  • Collection Owner
    Generally, the Collection Owner is the contact PI listed on a grant. Only one NDA user is listed as the Collection owner. Most automated emails are primarily sent to the Collection Owner.
  • Collection Phase
    The Collection Phase provides information on data submission as opposed to grant/project completion so while the Collection phase and grant/project phase may be closely related they are often different. Collection users with Administrative Privileges are encouraged to edit the Collection Phase. The Program Officer as listed in eRA (for NIH funded grants) may also edit this field. Changes must be saved by clicking the Save button at the bottom of the page. This field is sortable alphabetically in ascending or descending order. Collection Phase options include:
    • Pre-Enrollment: A grant/project has started, but has not yet enrolled subjects.
    • Enrolling: A grant/project has begun enrolling subjects. Data submission is likely ongoing at this point.
    • Data Analysis: A grant/project has completed enrolling subjects and has completed all data submissions.
    • Funding Completed: A grant/project has reached the project end date.
  • Collection Title
    An editable field with the title of the Collection, which is often the title of the grant associated with the Collection.
  • Grant
    Provides the grant number(s) for the grant(s) associated with the Collection. The field is a hyperlink so clicking on the Grant number will direct the user to the grant information in the NIH Research Portfolio Online Reporting Tools (RePORT) page.
  • Supporting Documentation
    Various documents and materials to enable efficient use of the data by investigators unfamiliar with the project and may include the research protocol, questionnaires, and study manuals.
  • NIH Research Initiative
    NDA Collections may be organized by scientific similarity into NIH Research Initiatives, to facilitate query tool user experience. NIH Research Initiatives map to one or multiple Funding Opportunity Announcements.
  • Permission Group
    Access to shared record-level data in NDA is provisioned at the level of a Permission Group. NDA Permission Groups consist of one or multiple NDA Collections that contain data with the same subject consents.
  • Planned Enrollment
    Number of human subject participants to be enrolled in an NIH-funded clinical research study. The data is provided in competing applications and annual progress reports.
  • Actual Enrollment
    Number of human subjects enrolled in an NIH-funded clinical research study. The data is provided in annual progress reports.
  • NDA Collection
    A virtual container and organization structure for data and associated documentation from one grant or one large project/consortium. It contains tools for tracking data submission and allows investigators to define a wide array of other elements that provide context for the data, including all general information regarding the data and source project, experimental parameters used to collect any event-based data contained in the Collection, methods, and other supporting documentation. They also allow investigators to link underlying data to an NDA Study, defining populations and subpopulations specific to research aims.
  • Data Use Limitations
    Data Use Limitations (DULs) describe the appropriate secondary use of a dataset and are based on the original informed consent of a research participant. NDA only accepts consent-based data use limitations defined by the NIH Office of Science Policy.
  • Total Subjects Shared
    The total number of unique subjects for whom data have been shared and are available for users with permission to access data.
helpcenter.collection.experiments-tab

NDA Help Center

Collection - Experiments

The number of Experiments included is displayed in parentheses next to the tab name. You may download all experiments associated with the Collection via the Download button. You may view individual experiments by clicking the Experiment Name and add them to the Filter Cart via the Add to Cart button.

Collection Owners, Program Officers, and users with Submission or Administrative Privileges for the Collection may create or edit an Experiment.

Please note: The creation of an NDA Experiment does not necessarily mean that data collected, according to the defined Experiment, has been submitted or shared.

Frequently Asked Questions

  • Can an Experiment be associated with more than one Collection?

    Yes -see the “Copy” button in the bottom left when viewing an experiment. There are two actions that can be performed via this button:

    1. Copy the experiment with intent for modifications.
    2. Associate the experiment to the collection. No modifications can be made to the experiment.

Glossary

  • Experiment Status
    An Experiment must be Approved before data using the associated Experiment_ID may be uploaded.
  • Experiment ID
    The ID number automatically generated by NDA which must be included in the appropriate file when uploading data to link the Experiment Definition to the subject record.
EEG Subject Files Imaging 40
Image Imaging 370
helpcenter.collection.shared-data-tab

NDA Help Center

Collection - Shared Data

This tab provides a quick overview of the Data Structure title, Data Type, and Number of Subjects that are currently Shared for the Collection. The information presented in this tab is automatically generated by NDA and cannot be edited. If no information is visible on this tab, this would indicate the Collection does not have shared data or the data is private.

The shared data is available to other researchers who have permission to access data in the Collection's designated Permission Group(s). Use the Download button to get all shared data from the Collection to the Filter Cart.

Frequently Asked Questions

  • How will I know if another researcher uses data that I shared through the NIMH Data Archive (NDA)?
    To see what data your project have submitted are being used by a study, simply go the Associated Studies tab of your collection. Alternatively, you may review an NDA Study Attribution Report available on the General tab.
  • Can I get a supplement to share data from a completed research project?
    Often it becomes more difficult to organize and format data electronically after the project has been completed and the information needed to create a GUID may not be available; however, you may still contact a program staff member at the appropriate funding institution for more information.
  • Can I get a supplement to share data from a research project that is still ongoing?
    Unlike completed projects where researchers may not have the information needed to create a GUID and/or where the effort needed to organize and format data becomes prohibitive, ongoing projects have more of an opportunity to overcome these challenges. Please contact a program staff member at the appropriate funding institution for more information.

Glossary

  • Data Structure
    A defined organization and group of Data Elements to represent an electronic definition of a measure, assessment, questionnaire, or collection of data points. Data structures that have been defined in the NDA Data Dictionary are available at https://nda.nih.gov/general-query.html?q=query=data-structure
  • Data Type
    A grouping of data by similar characteristics such as Clinical Assessments, Omics, or Neurosignal data.
  • Shared
    The term 'Shared' generally means available to others; however, there are some slightly different meanings based on what is Shared. A Shared NDA Study is viewable and searchable publicly regardless of the user's role or whether the user has an NDA account. A Shared NDA Study does not necessarily mean that data used in the NDA Study have been shared as this is independently determined. Data are shared according the schedule defined in a Collection's Data Expected Tab and/or in accordance with data sharing expectations in the NDA Data Sharing Terms and Conditions. Additionally, Supporting Documentation uploaded to a Collection may be shared independent of whether data are shared.

Collection Owners and those with Collection Administrator permission, may edit a collection. The following is currently available for Edit on this page:

Publications

Publications relevant to NDA data are listed below. Most displayed publications have been associated with the grant within Pubmed. Use the "+ New Publication" button to add new publications. Publications relevant/not relevant to data expected are categorized. Relevant publications are then linked to the underlying data by selecting the Create Study link. Study provides the ability to define cohorts, assign subjects, define outcome measures and lists the study type, data analysis and results. Analyzed data and results are expected in this way.

PubMed IDStudyTitleJournalAuthorsDateStatus
38435074Create StudyHow Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning?Advances in neural information processing systemsZhuang, Chengxu; Xiang, Violet; Bai, Yoon; Jia, Xiaoxuan; Turk-Browne, Nicholas; Norman, Kenneth; DiCarlo, James J; Yamins, Daniel L KJanuary 1, 2022Not Determined
38116686Create StudyStatistical learning in epilepsy: Behavioral and anatomical mechanisms in the human brain.EpilepsiaAljishi, Ayman; Sherman, Brynn E; Huberdeau, David M; Obaid, Sami; Khan, Kamren; Lamsam, Layton; Zibly, Zion; Sivaraju, Adithya; Turk-Browne, Nicholas B; Damisah, Eyiyemisi CMarch 1, 2024Not Determined
38106228Create StudyINDUCING REPRESENTATIONAL CHANGE IN THE HIPPOCAMPUS THROUGH REAL-TIME NEUROFEEDBACK.bioRxiv : the preprint server for biologyPeng, Kailong; Wammes, Jeffrey D; Nguyen, Alex; Cătălin Iordan, Marius; Norman, Kenneth A; Turk-Browne, Nicholas BDecember 4, 2023Not Determined
37390333Create StudyMultiple Memory Subsystems: Reconsidering Memory in the Mind and Brain.Perspectives on psychological science : a journal of the Association for Psychological ScienceSherman, Brynn E; Turk-Browne, Nicholas B; Goldfarb, Elizabeth VJanuary 1, 2024Not Determined
36344264Create StudyTemporal Dynamics of Competition between Statistical Learning and Episodic Memory in Intracranial Recordings of Human Visual Cortex.The Journal of neuroscience : the official journal of the Society for NeuroscienceSherman, Brynn E; Graves, Kathryn N; Huberdeau, David M; Quraishi, Imran H; Damisah, Eyiyemisi C; Turk-Browne, Nicholas BNovember 30, 2022Not Determined
36279437Create StudyA model of autonomous interactions between hippocampus and neocortex driving sleep-dependent memory consolidation.Proceedings of the National Academy of Sciences of the United States of AmericaSingh, Dhairyya; Norman, Kenneth A; Schapiro, Anna CNovember 1, 2022Not Determined
35961387Create StudyRemembering the pattern: A longitudinal case study on statistical learning in spatial navigation and memory consolidation.NeuropsychologiaGraves, Kathryn N; Sherman, Brynn E; Huberdeau, David; Damisah, Eyiyemisi; Quraishi, Imran H; Turk-Browne, Nicholas BSeptember 9, 2022Not Determined
34989336Create StudyIncreasing stimulus similarity drives nonmonotonic representational change in hippocampus.eLifeWammes, Jeffrey; Norman, Kenneth A; Turk-Browne, NicholasJanuary 6, 2022Not Determined
33608265Create StudyLearning hierarchical sequence representations across human cortex and hippocampus.Science advancesHenin, Simon; Turk-Browne, Nicholas B; Friedman, Daniel; Liu, Anli; Dugan, Patricia; Flinker, Adeen; Doyle, Werner; Devinsky, Orrin; Melloni, LuciaFebruary 1, 2021Not Determined
33475417Create StudyVisuomotor associations facilitate movement preparation.Journal of experimental psychology. Human perception and performanceHuberdeau, David M; Turk-Browne, Nicholas BMarch 1, 2021Not Determined
33431673Create StudyUnsupervised neural network models of the ventral visual stream.Proceedings of the National Academy of Sciences of the United States of AmericaZhuang, Chengxu; Yan, Siming; Nayebi, Aran; Schrimpf, Martin; Frank, Michael C; DiCarlo, James J; Yamins, Daniel L KJanuary 19, 2021Not Determined
33271266Create StudyEmergence and organization of adult brain function throughout child development.NeuroImageYates, Tristan S; Ellis, Cameron T; Turk-Browne, Nicholas BFebruary 1, 2021Not Determined
33270655Create StudySearching through functional space reveals distributed visual, auditory, and semantic coding in the human brain.PLoS computational biologyKumar, Sreejan; Ellis, Cameron T; O'Connell, Thomas P; Chun, Marvin M; Turk-Browne, Nicholas BDecember 1, 2020Not Determined
32859755Create StudyStatistical prediction of the future impairs episodic encoding of the present.Proceedings of the National Academy of Sciences of the United States of AmericaSherman, Brynn E; Turk-Browne, Nicholas BSeptember 15, 2020Not Determined
32853531Create StudyFinding the Pattern: On-Line Extraction of Spatial Structure During Virtual Navigation.Psychological scienceGraves, Kathryn N; Antony, James W; Turk-Browne, Nicholas BSeptember 2020Not Determined
32258249Create StudyThe prevalence and importance of statistical learning in human cognition and behavior.Current opinion in behavioral sciencesSherman, Brynn E; Graves, Kathryn N; Turk-Browne, Nicholas BApril 2020Not Determined
31871278Study (647)Relating Visual Production and Recognition of Objects in Human Visual Cortex.The Journal of neuroscience : the official journal of the Society for NeuroscienceFan JE, Wammes JD, Gunn JB, Yamins DLK, Norman KA, Turk-Browne NBFebruary 2020Not Determined
31820676Study (844)Content-based Dissociation of Hippocampal Involvement in Prediction.Journal of cognitive neuroscienceKok, Peter; Rait, Lindsay I; Turk-Browne, Nicholas BMarch 2020Not Determined
31734633Create StudyThe hippocampus as a visual area organized by space and time: A spatiotemporal similarity hypothesis.Vision researchTurk-Browne, Nicholas BDecember 2019Not Determined
31488845Study (803)Hippocampal-neocortical interactions sharpen over time for predictive actions.Nature communicationsHindy, Nicholas C; Avery, Emily W; Turk-Browne, Nicholas BSeptember 2019Not Determined
31358438Create StudyNonmonotonic Plasticity: How Memory Retrieval Drives Learning.Trends in cognitive sciencesRitvo, Victoria J H; Turk-Browne, Nicholas B; Norman, Kenneth ASeptember 2019Not Determined
31318229Create StudyComplexity can facilitate visual and auditory perception.Journal of experimental psychology. Human perception and performanceEllis CT, Turk-Browne NBSeptember 2019Not Determined
30254219Create StudyHuman hippocampal replay during rest prioritizes weakly learned information and predicts memory performance.Nature communicationsSchapiro, Anna C; McDevitt, Elizabeth A; Rogers, Timothy T; Mednick, Sara C; Norman, Kenneth ASeptember 2018Not Determined
30125986Create StudyCommon Object Representations for Visual Production and Recognition.Cognitive scienceFan JE, Yamins DLK, Turk-Browne NBNovember 2018Not Determined
30082704Study (604)Reductions in Retrieval Competition Predict the Benefit of Repeated Testing.Scientific reportsRafidi, Nicole S; Hulbert, Justin C; Brooks, Paula P; Norman, Kenneth AAugust 2018Not Determined
29986875Study (606)Associative Prediction of Visual Shape in the Hippocampus.The Journal of neuroscience : the official journal of the Society for NeuroscienceKok, Peter; Turk-Browne, Nicholas BAugust 2018Not Determined
29897407Study (539)Neural Overlap in Item Representations Across Episodes Impairs Context Memory.Cerebral cortex (New York, N.Y. : 1991)Kim, Ghootae; Norman, Kenneth A; Turk-Browne, Nicholas BJune 1, 2019Relevant
29487030Create StudyInfant fMRI: A Model System for Cognitive Neuroscience.Trends in cognitive sciencesEllis CT, Turk-Browne NBFebruary 2018Not Determined
29093451Create StudySleep Benefits Memory for Semantic Category Structure While Preserving Exemplar-Specific Information.Scientific reportsSchapiro, Anna C; McDevitt, Elizabeth A; Chen, Lang; Norman, Kenneth A; Mednick, Sara C; Rogers, Timothy TNovember 2017Relevant
28583416Create StudyRetrieval as a Fast Route to Memory Consolidation.Trends in cognitive sciencesAntony JW, Ferreira CS, Norman KA, Wimber MAugust 2017Not Determined
28387587Create StudyMultiple-object Tracking as a Tool for Parametrically Modulating Memory Reactivation.Journal of cognitive neurosciencePoppenk J, Norman KAAugust 2017Not Relevant
28230848Create StudyComputational approaches to fMRI analysis.Nature neuroscienceCohen JD, Daw N, Engelhardt B, Hasson U, Li K, Niv Y, Norman KA, Pillow J, Ramadge PJ, Turk-Browne NB, Willke TLFebruary 2017Not Relevant
28115478Study (454)Neural Differentiation of Incorrectly Predicted Memories.The Journal of neuroscience : the official journal of the Society for NeuroscienceKim, Ghootae; Norman, Kenneth A; Turk-Browne, Nicholas BFebruary 2017Relevant
27872368Create StudyComplementary learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning.Philosophical transactions of the Royal Society of London. Series B, Biological sciencesSchapiro AC, Turk-Browne NB, Botvinick MM, Norman KAJanuary 2017Not Relevant
27845034Create StudyNeural evidence of the strategic choice between working memory and episodic memory in prospective remembering.NeuropsychologiaLewis-Peacock, Jarrod A; Cohen, Jonathan D; Norman, Kenneth ADecember 2016Not Determined
27150815Create StudyA neural signature of contextually mediated intentional forgetting.Psychonomic bulletin & reviewManning JR, Hulbert JC, Williams J, Piloto L, Sahakyan L, Norman KAOctober 2016Not Determined
helpcenter.collection.publications-tab

NDA Help Center

Collection - Publications

The number of Publications is displayed in parentheses next to the tab name. Clicking on any of the Publication Titles will open the Publication in a new internet browsing tab.

Collection Owners, Program Officers, and users with Submission or Administrative Privileges for the Collection may mark a publication as either Relevant or Not Relevant in the Status column.

Frequently Asked Questions

  • How can I determine if a publication is relevant?
    Publications are considered relevant to a collection when the data shared is directly related to the project or collection.
  • Where does the NDA get the publications?
    PubMed, an online library containing journals, articles, and medical research. Sponsored by NiH and National Library of Medicine (NLM).

Glossary

  • Create Study
    A link to the Create an NDA Study page that can be clicked to start creating an NDA Study with information such as the title, journal and authors automatically populated.
  • Not Determined Publication
    Indicates that the publication has not yet been reviewed and/or marked as Relevant or Not Relevant so it has not been determined whether an NDA Study is expected.
  • Not Relevant Publication
    A publication that is not based on data related to the aims of the grant/project associated with the Collection or not based on any data such as a review article and, therefore, an NDA Study is not expected to be created.
  • PubMed
    PubMed provides citation information for biomedical and life sciences publications and is managed by the U.S. National Institutes of Health's National Library of Medicine.
  • PubMed ID
    The PUBMed ID is the unique ID number for the publication as recorded in the PubMed database.
  • Relevant Publication
    A publication that is based on data related to the aims of the grant/project associated with the Collection and, therefore, an NDA Study is expected to be created.
Data Expected List: Mandatory Data Structures

These data structures are mandatory for your NDA Collection. Please update the Targeted Enrollment number to accurately represent the number of subjects you expect to submit for the entire study.

For NIMH HIV-related research that involves human research participants: Select the dictionary or dictionaries most appropriate for your research. If your research does not require all three data dictionaries, just ignore the ones you do not need. There is no need to delete extra data dictionaries from your NDA Collection. You can adjust the Targeted Enrollment column in the Data Expected tab to “0” for those unnecessary data dictionaries. At least one of the three data dictionaries must have a non-zero value.

Data ExpectedTargeted EnrollmentInitial SubmissionSubjects SharedStatus
Research Subject and Pedigree info icon
32007/15/2017
0
Approved
To create your project's Data Expected list, use the "+New Data Expected" to add or request existing structures and to request new Data Structures that are not in the NDA Data Dictionary.

If the Structure you need already exists, locate it and specify your dates and enrollment when adding it to your Data Expected list. If you require changes to the Structure you need, select the indicator stating "No, it requires changes to meet research needs," and upload a file containing your requested changes.

If the structure you need is not yet defined in the Data Dictionary, you can select "Upload Definition" and attach the necessary materials to request its creation.

When selecting the expected dates for your data, make sure to follow the standard Data Sharing Regimen and choose dates within the date ranges that correspond to your project start and end dates.

Please visit the Completing Your Data Expected Tutorial for more information.
Data Expected List: Data Structures per Research Aims

These data structures are specific to your research aims and should list all data structures in which data will be collected and submitted for this NDA Collection. Please update the Targeted Enrollment number to accurately represent the number of subjects you expect to submit for the entire study.

Data ExpectedTargeted EnrollmentInitial SubmissionSubjects SharedStatus
Processed MRI Data info icon
32007/15/2017
0
Approved
Imaging (Structural, fMRI, DTI, PET, microscopy) info icon
32007/15/2017
370
Approved
EEG info icon
4007/15/2017
40
Approved
Structure not yet defined
No Status history for this Data Expected has been recorded yet
helpcenter.collection.data-expected-tab

NDA Help Center

Collection - Data Expected

The Data Expected tab displays the list of all data that NDA expects to receive in association with the Collection as defined by the contributing researcher, as well as the dates for the expected initial upload of the data, and when it is first expected to be shared, or with the research community. Above the primary table of Data Expected, any publications determined to be relevant to the data within the Collection are also displayed - members of the contributing research group can use these to define NDA Studies, connecting those papers to underlying data in NDA.

The tab is used both as a reference for those accessing shared data, providing information on what is expected and when it will be shared, and as the primary tracking mechanism for contributing projects. It is used by both contributing primary researchers, secondary researchers, and NIH Program and Grants Management staff.

Researchers who are starting their project need to update their Data Expected list to include all the Data Structures they are collecting under their grant and set their initial submission and sharing schedule according to the NDA Data Sharing Regimen.

To add existing Data Structures from the Data Dictionary, to request new Data Structure that are not in the Dictionary, or to request changes to existing Data Structures, click "+New Data Expected".

For step-by-step instructions on how to add existing Data Structures, request changes to an existing Structure, or request a new Data Structure, please visit the Completing Your Data Expected Tutorial.

If you are a contributing researcher creating this list for the first time, or making changes to the list as your project progress, please note the following:

  • Although items you add to the list and changes you make are displayed, they are not committed to the system until you Save the entire page using the "Save" button at the bottom of your screen. Please Save after every change to ensure none of your work is lost.
  • If you attempt to add a new structure, the title you provide must be unique - if another structure exists with the same name your change will fail.
  • Adding a new structure to this list is the only way to request the creation of a new Data Dictionary definition.

Frequently Asked Questions

  • What is an NDA Data Structure?
    An NDA Data Structure is comprised of multiple Data Elements to make up an electronic definition of an assessment, measure, questionnaire, etc will have a corresponding Data Structure.
  • What is the NDA Data Dictionary?
    The NDA Data Dictionary is comprised of electronic definitions known as Data Structures.

Glossary

  • Analyzed Data
    Data specific to the primary aims of the research being conducted (e.g. outcome measures, other dependent variables, observations, laboratory results, analyzed images, volumetric data, etc.) including processed images.
  • Data Item
    Items listed on the Data Expected list in the Collection which may be an individual and discrete Data Structure, Data Structure Category, or Data Structure Group.
  • Data Structure
    A defined organization and group of Data Elements to represent an electronic definition of a measure, assessment, questionnaire, or collection of data points. Data structures that have been defined in the NDA Data Dictionary are available at https://nda.nih.gov/general-query.html?q=query=data-structure
  • Data Structure Category
    An NDA term describing the affiliation of a Data Structure to a Category, which may be disease/disorder or diagnosis related (Depression, ADHD, Psychosis), specific to data type (MRI, eye tracking, omics), or type of data (physical exam, IQ).
  • Data Structure Group
    A Data Item listed on the Data Expected tab of a Collection that indicates a group of Data Structures (e.g., ADOS or SCID) for which data may be submitted instead of a specific Data Structure identified by version, module, edition, etc. For example, the ADOS Data Structure Category includes every ADOS Data Structure such as ADOS Module 1, ADOS Module 2, ADOS Module 1 - 2nd Edition, etc. The SCID Data Structure Group includes every SCID Data Structure such as SCID Mania, SCID V Mania, SCID PTSD, SCID-V Diagnosis, and more.
  • Evaluated Data
    A new Data Structure category, Evaluated Data is analyzed data resulting from the use of computational pipelines in the Cloud and can be uploaded directly back to a miNDAR database. Evaluated Data is expected to be listed as a Data Item in the Collection's Data Expected Tab.
  • Imaging Data
    Imaging+ is an NDA term which encompasses all imaging related data including, but not limited to, images (DTI, MRI, PET, Structural, Spectroscopy, etc.) as well as neurosignal data (EEG, fMRI, MEG, EGG, eye tracking, etc.) and Evaluated Data.
  • Initial Share Date
    Initial Submission and Initial Share dates should be populated according to the NDA Data Sharing Terms and Conditions. Any modifications to these will go through the approval processes outlined above. Data will be shared with authorized users upon publication (via an NDA Study) or 1-2 years after the grant end date specified on the first Notice of Award, as defined in the applicable Data Sharing Terms and Conditions.
  • Initial Submission Date
    Initial Submission and Initial Share dates should be populated according to these NDA Data Sharing Terms and Conditions. Any modifications to these will go through the approval processes outlined above. Data for all subjects is not expected on the Initial Submission Date and modifications may be made as necessary based on the project's conduct.
  • Research Subject and Pedigree
    An NDA created Data Structure used to convey basic information about the subject such as demographics, pedigree (links family GUIDs), diagnosis/phenotype, and sample location that are critical to allow for easier querying of shared data.
  • Submission Cycle
    The NDA has two Submission Cycles per year - January 15 and July 15.
  • Submission Exemption
    An interface to notify NDA that data may not be submitted during the upcoming/current submission cycle.

Collection Owners and those with Collection Administrator permission, may edit a collection. The following is currently available for Edit on this page:

Associated Studies

Studies that have been defined using data from a Collection are important criteria to determine the value of data shared. The number of subjects column displays the counts from this Collection that are included in a Study, out of the total number of subjects in that study. The Data Use column represents whether or not the study is a primary analysis of the data or a secondary analysis. State indicates whether the study is private or shared with the research community.

Study NameAbstractCollection/Study SubjectsData UsageState
Stat LearningParticipants viewed centrally presented images, one at a time. There were 16 different images presented and each were composed of 8 image pairs. The pairs varied in visual similarity, from completely dissimilar to almost exactly the same. Participants were asked to identify when this square was present by pressing a key with their right index finger. Images were presented for 1 second each, and the ITI was 2, 4 or 6 s. Participants completed 8 runs of this task in the scanner, each of which was just over 5 minutes in length. in the first and last run, the images were presented in completely random order. In the remaining six runs, the images were presented as AB pairs, such that when the first member of a pair was presented, it was always followed by the second member of the pair.41/41Primary AnalysisShared
Reductions in Retrieval Competition Predict the Benefit of Repeated TestingRepeated testing leads to improved long-term memory retention compared to repeated study, but the mechanism underlying this improvement remains controversial. In this work, we test the hypothesis that retrieval practice benefits subsequent recall by reducing competition from related memories. This hypothesis implies that the degree of reduction in competition between retrieval practice attempts should predict subsequent memory for practiced items. To test this prediction, we collected electroencephalography (EEG) data across two sessions. In the first session, participants practiced selectively retrieving exemplars from superordinate semantic categories (high competition), as well as retrieving the names of the superordinate categories from exemplars (low competition). In the second session, participants repeatedly studied and were tested on Swahili-English vocabulary. One week after session two, participants were again tested on the vocabulary. We trained a within-subject classifier on the data from session one to distinguish high and low competition states. We then used this classifier to measure the change in competition across multiple successful retrieval practice attempts in the second session. The degree to which competition decreased for a given vocabulary word predicted whether it was subsequently remembered in the third session. These results are consistent with the hypothesis that repeated testing improves retention by reducing competition.40/40Primary AnalysisShared
Learning not to remember: How predicting the future impairs encoding of the presentMemory is typically thought of as enabling reminiscence about past experiences. However, memory also informs and guides processing of future experiences. These two functions of memory are inherently incompatible: remembering specific experiences from the past requires storing idiosyncratic properties that define particular moments in space and time, but by definition such properties will not be shared with similar situations in the future and thus are not useful for prediction. We discovered that, when faced with this conflict, the brain prioritizes prediction over encoding. Behavioral tests of recognition and source recall showed that items allowing for prediction of what will appear next based on learned regularities were less likely to be encoded into memory. Brain imaging revealed that the hippocampus was responsible for this interference between statistical learning and episodic memory. The more that the hippocampus predicted the category of an upcoming item, the worse the current item was encoded. This competition may serve an adaptive purpose, focusing encoding on experiences for which we do not yet have a predictive model.36/36Primary AnalysisShared
Neural overlap in item representations across episodes impairs context memoryWe frequently encounter the same item in different contexts, and when that happens, memories of earlier encounters can get reactivated in the brain. Here we examined how these existing memories are changed as a result of such reactivation. We hypothesized that when an item’s initial and subsequent neural representations overlap, this allows the initial item to become associated with novel contextual information, interfering with later retrieval of the initial context. That is, we predicted a negative relationship between representational similarity across repeated experiences of an item and subsequent source memory for the initial context. We tested this hypothesis in an fMRI study, in which objects were presented multiple times during different tasks. We measured the similarity of the neural patterns in lateral occipital cortex that were elicited by the first and second presentations of objects, and related this neural overlap score to source memory in a subsequent test. Consistent with our hypothesis, greater item-specific pattern similarity was linked to worse source memory for the initial task. Our findings suggest that the influence of novel experiences on an existing context memory depends on how reliably a shared component (i.e., same item) is represented across these episodes.32/32Primary AnalysisShared
Violation DifferentiationWhen an item is predicted in a particular context but the prediction is violated, memory for that item is weakened (Kim et al., 2014). Here, we explore what happens when such previously mispredicted items are later reencountered. According to prior neural network simulations, this sequence of events-misprediction and subsequent restudy-should lead to differentiation of the item's neural representation from the previous context (on which the misprediction was based). Specifically, misprediction weakens connections in the representation to features shared with the previous context and restudy allows new features to be incorporated into the representation that are not shared with the previous context. This cycle of misprediction and restudy should have the net effect of moving the item's neural representation away from the neural representation of the previous context. We tested this hypothesis using human fMRI by tracking changes in item-specific BOLD activity patterns in the hippocampus, a key structure for representing memories and generating predictions. In left CA2/3/DG, we found greater neural differentiation for items that were repeatedly mispredicted and restudied compared with items from a control condition that was identical except without misprediction. We also measured prediction strength in a trial-by-trial fashion and found that greater misprediction for an item led to more differentiation, further supporting our hypothesis. Therefore, the consequences of prediction error go beyond memory weakening. If the mispredicted item is restudied, the brain adaptively differentiates its memory representation to improve the accuracy of subsequent predictions and to shield it from further weakening. SIGNIFICANCE STATEMENT Competition between overlapping memories leads to weakening of nontarget memories over time, making it easier to access target memories. However, a nontarget memory in one context might become a target memory in another context. How do such memories get restrengthened without increasing competition again? Computational models suggest that the brain handles this by reducing neural connections to the previous context and adding connections to new features that were not part of the previous context. The result is neural differentiation away from the previous context. Here, we provide support for this theory, using fMRI to track neural representations of individual memories in the hippocampus and how they change based on learning. 32/32Primary AnalysisShared
Relating Visual Production and Recognition of Objects in Human Visual CortexDrawing is a powerful tool that can be used to convey rich perceptual information about objects in the world. What are the neural mechanisms that enable us to produce a recognizable drawing of an object, and how does this visual production experience influence how this object is represented in the brain? Here we evaluate the hypothesis that producing and recognizing an object recruit a shared neural representation, such that repeatedly drawing the object can enhance its perceptual discriminability in the brain. We scanned human participants (N = 31; 11 male) using fMRI across three phases of a training study: during training, participants repeatedly drew two objects in an alternating sequence on an MR-compatible tablet; before and after training, they viewed these and two other control objects, allowing us to measure the neural representation of each object in visual cortex. We found that: (1) stimulus-evoked representations of objects in visual cortex are recruited during visually cued production of drawings of these objects, even throughout the period when the object cue is no longer present; (2) the object currently being drawn is prioritized in visual cortex during drawing production, while other repeatedly drawn objects are suppressed; and (3) patterns of connectivity between regions in occipital and parietal cortex supported enhanced decoding of the currently drawn object across the training phase, suggesting a potential neural substrate for learning how to transform perceptual representations into representational actions. Together, our study provides novel insight into the functional relationship between visual production and recognition in the brain. SIGNIFICANCE STATEMENT: Humans can produce simple line drawings that capture rich information about their perceptual experiences. However, the mechanisms that support this behavior are not well understood. Here we investigate how regions in visual cortex participate in the recognition of an object and the production of a drawing of it. We find that these regions carry diagnostic information about an object in a similar format both during recognition and production, and that practice drawing an object enhances transmission of information about it to downstream regions. Together, our study provides novel insight into the functional relationship between visual production and recognition in the brain.31/31Primary AnalysisShared
Associative prediction of visual shape in the hippocampus.The way we perceive the world is to a great extent determined by our prior knowledge. Despite this intimate link between perception and memory, these two aspects of cognition have mostly been studied in isolation. Here we investigate their interaction by asking how memory systems that encode and retrieve associations can inform perception. We find that upon hearing a familiar auditory cue, the hippocampus represents visual information that had previously co-occurred with the cue, even when this expectation differs from what is currently visible. Furthermore, the strength of this hippocampal expectation correlates with facilitation of perceptual processing in visual cortex. These findings help bridge the gap between memory and sensory systems in the human brain.24/24Primary AnalysisShared
Content-based Dissociation of Hippocampal Involvement in PredictionRecent work suggests that a key function of the hippocampus is to predict the future. This is thought to depend on its ability to bind inputs over time and space and to retrieve upcoming or missing inputs based on partial cues. In line with this, previous research has revealed prediction-related signals in the hippocampus for complex visual objects, such as fractals and abstract shapes. Implicit in such accounts is that these computations in the hippocampus reflect domain-general processes that apply across different types and modalities of stimuli. An alternative is that the hippocampus plays a more domain-specific role in predictive processing, with the type of stimuli being predicted determining its involvement. To investigate this, we compared hippocampal responses to auditory cues predicting abstract shapes (Experiment 1) versus oriented gratings (Experiment 2). We measured brain activity in male and female human participants using high-resolution fMRI, in combination with inverted encoding models to reconstruct shape and orientation information. Our results revealed that expectations about shape and orientation evoked distinct representations in the hippocampus. For complex shapes, the hippocampus represented which shape was expected, potentially serving as a source of top–down predictions. In contrast, for simple gratings, the hippocampus represented only unexpected orientations, more reminiscent of a prediction error. We discuss several potential explanations for this content-based dissociation in hippocampal function, concluding that the computational role of the hippocampus in predictive processing may depend on the nature and complexity of stimuli.24/24Primary AnalysisShared
Hippocampal-neocortical interactions sharpen over time for predictive actions.When an action is familiar, we are able to anticipate how it will change the state of the world. These expectations can result from retrieval of action-outcome associations in the hippocampus and the reinstatement of anticipated outcomes in visual cortex. How does this role for the hippocampus in action-based prediction change over time? We use high-resolution fMRI and a dual-training behavioral paradigm to examine how the hippocampus interacts with visual cortex during predictive and nonpredictive actions learned either three days earlier or immediately before the scan. Just-learned associations led to comparable background connectivity between the hippocampus and V1/V2, regardless of whether actions predicted outcomes. However, three-day-old associations led to stronger background connectivity and greater differentiation between neural patterns for predictive vs. nonpredictive actions. Hippocampal prediction may initially reflect indiscriminate binding of co-occurring events, with action information pruning weaker associations and leading to more selective and accurate predictions over time.24/24Primary AnalysisShared
Human hippocampal replay during rest prioritizes weakly-learned information and predicts memory performanceThere is now extensive evidence that the hippocampus replays experiences during quiet rest periods, and that this replay benefits subsequent memory. A critical open question is how memories are prioritized for replay during these offline periods. We addressed this question in an experiment in which participants learned the features of 15 objects and then underwent fMRI scanning to track item-level replay in the hippocampus using pattern analysis during a rest period. Objects that were remembered less well were replayed more during the subsequent rest period, suggesting a prioritization process in which weaker memories—memories most vulnerable to forgetting—are selected for wake replay. Participants came back for a second session, either after a night of sleep or a day awake, and underwent another scanned rest period followed by a second memory test. In the second session, more hippocampal replay of a satellite during the rest period predicted better subsequent memory for that satellite. Only in the group with intervening sleep did rest replay predict improvement from the first to second session. Our results provide the first evidence that replay of individual memories occurs during rest in the human hippocampus and that this replay prioritizes weakly learned information, predicts subsequent memory performance, and relates to memory improvement across a delay with sleep.24/24Primary AnalysisShared
Sculpting New Visual Concepts into the Human BrainLearning requires changing the brain. This typically occurs through experience, study, or instruction. We report a new way of acquiring conceptual knowledge by directly sculpting activity patterns in the human brain. We used a non-invasive technique (closed-loop real-time functional magnetic resonance imaging) to create novel categories of visual objects in the brain. After training, participants exhibited behavioral and neural biases for the sculpted, but not control categories. The ability to sculpt new conceptual distinctions in the human brain, applied here to perception, has broad relevance to other domains of cognition such as decision-making, memory, and motor control. As such, the work opens up new frontiers in brain-machine interface design, neuroprosthetics, and neurorehabilitation.10/10Primary AnalysisShared
* Data not on individual level
helpcenter.collection.associated-studies-tab

NDA Help Center

Collection - Associated Studies

Clicking on the Study Title will open the study details in a new internet browser tab. The Abstract is available for viewing, providing the background explanation of the study, as provided by the Collection Owner.

Primary v. Secondary Analysis: The Data Usage column will have one of these two choices. An associated study that is listed as being used for Primary Analysis indicates at least some and potentially all of the data used was originally collected by the creator of the NDA Study. Secondary Analysis indicates the Study owner was not involved in the collection of data, and may be used as supporting data.

Private v. Shared State: Studies that remain private indicate the associated study is only available to users who are able to access the collection. A shared study is accessible to the general public.

Frequently Asked Questions

  • How do I associate a study to my collection?
    Studies are associated to the Collection automatically when the data is defined in the Study.

Glossary

  • Associated Studies Tab
    A tab in a Collection that lists the NDA Studies that have been created using data from that Collection including both Primary and Secondary Analysis NDA Studies.
Edit